Deep architectures for Neural Machine Translation

نویسندگان

  • Antonio Valerio Miceli Barone
  • Jindrich Helcl
  • Rico Sennrich
  • Barry Haddow
  • Alexandra Birch
چکیده

It has been shown that increasing model depth improves the quality of neural machine translation. However, different architectural variants to increase model depth have been proposed, and so far, there has been no thorough comparative study. In this work, we describe and evaluate several existing approaches to introduce depth in neural machine translation. Additionally, we explore novel architectural variants, including deep transition RNNs, and we vary how attention is used in the deep decoder. We introduce a novel "BiDeep" RNN architecture that combines deep transition RNNs and stacked RNNs. Our evaluation is carried out on the English to German WMT news translation dataset, using a single-GPU machine for both training and inference. We find that several of our proposed architectures improve upon existing approaches in terms of speed and translation quality. We obtain best improvements with a BiDeep RNN of combined depth 8, obtaining an average improvement of 1.5 BLEU over a strong shallow baseline. We release our code for ease of adoption.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

XMU Neural Machine Translation Systems for WMT 17

This paper describes the Neural Machine Translation systems of Xiamen University for the translation tasks of WMT 17. Our systems are based on the Encoder-Decoder framework with attention. We participated in three directions of shared news translation tasks: English→German and Chinese↔English. We experimented with deep architectures, different segmentation models, synthetic training data and ta...

متن کامل

Experiments on Different Recurrent Neural Networks for English-hindi Machine Translation

Recurrent Neural Networks are a type of Artificial Neural Networks which are adept at dealing with problems which have a temporal aspect to them. These networks exhibit dynamic properties due to their recurrent connections. Most of the advances in deep learning employ some form of Recurrent Neural Networks for their model architecture. RNN's have proven to be an effective technique in applicati...

متن کامل

The University of Edinburgh's Neural MT Systems for WMT17

This paper describes the University of Edinburgh’s submissions to the WMT17 shared news translation and biomedical translation tasks. We participated in 12 translation directions for news, translating between English and Czech, German, Latvian, Russian, Turkish and Chinese. For the biomedical task we submitted systems for English to Czech, German, Polish and Romanian. Our systems are neural mac...

متن کامل

English-hindi Using Rnn’s

Recurrent Neural Networks are a type of Artificial Neural Networks which are adept at dealing with problems which have a temporal aspect to them. These networks exhibit dynamic properties due to their recurrent connections. Most of the advances in deep learning employ some form of Recurrent Neural Networks for their model architecture. RNN's have proven to be an effective technique in applicati...

متن کامل

Neural Optimizer Search with Reinforcement Learning

We present an approach to automate the process of discovering optimization methods, with a focus on deep learning architectures. We train a Recurrent Neural Network controller to generate a string in a domain specific language that describes a mathematical update equation based on a list of primitive functions, such as the gradient, running average of the gradient, etc. The controller is traine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017